Dynamic Simulation of Particle-Filled Hollow Spheres

Tobias Steinle, Andrea Walther, Jadran Vrabec

Universität Paderborn
Institut für Mathematik

GAMM 2012, Darmstadt
Table of contents

Motivation

Mathematical Modelling
 Molecular Dynamics
 Time Integration
 Potentials

Numerical Results

Current Cooperation: Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Dresden (Ulrike Jehring)
vibration can cause many problems, e.g., noise and wear

development of light-weight material at Fraunhofer Institute for Manufacturing Technology and Advanced Materials (Ulrike Jehring)

research on hollow sphere structures
Motivation
Advantages of hollow sphere structures

- easily adaptable to different shapes
- solvent resistance, thermal resistance, noise reduction
Advantages of hollow sphere structures

- easily adaptable to different shapes
- solvent resistance, thermal resistance, noise reduction

Additionally
- hollow spheres with particles
Advantages of hollow sphere structures
Simulation of a sphere

Two basic possibilities

Collision Detection

- computation of the next collision following paths of particles
- 2D: diploma thesis (Denise Holfeld)
- high complexity
Simulation of a sphere

Two basic possibilities

<table>
<thead>
<tr>
<th>Collision Detection</th>
<th>Time Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>computation of the next collision</td>
<td>well established methods available for 3D case</td>
</tr>
<tr>
<td>following paths of particles</td>
<td></td>
</tr>
<tr>
<td>2D: diploma thesis (Denise Holfeld)</td>
<td></td>
</tr>
<tr>
<td>high complexity</td>
<td></td>
</tr>
</tbody>
</table>
Molecular Dynamics

- discrete element method
Molecular Dynamics

- discrete element method
- millions of molecules
Molecular Dynamics

- discrete element method
- millions of molecules
- equally distributed particles
Molecular Dynamics

- discrete element method
- millions of molecules
- equally distributed particles
- periodic boundaries
Molecular Dynamics

- discrete element method
- millions of molecules
- equally distributed particles
- periodic boundaries
- cuboid simulation region
Molecular Dynamics

- discrete element method
- millions of molecules
- equally distributed particles
- periodic boundaries
- cuboid simulation region
- potential-based
Molecular Dynamics

- discrete element method
- millions of molecules
- equally distributed particles
- periodic boundaries
- cuboid simulation region
- potential-based
- basic program available Thermodynamics and Energy Technology (Jadran Vrabec)
Adaptations for filled spheres

- sphere with reflective boundary conditions
Adaptations for filled spheres

- sphere with reflective boundary conditions
- gravity
Adaptations for filled spheres

- sphere with reflective boundary conditions
- gravity
- friction
Adaptations for filled spheres

- sphere with reflective boundary conditions
- gravity
- friction
- deformation and movement of the boundary
Adaptations for filled spheres

- sphere with reflective boundary conditions
- gravity
- friction
- deformation and movement of the boundary
- different particle shapes
Adaptations for filled spheres

- sphere with reflective boundary conditions
- gravity
- friction
- deformation and movement of the boundary
- different particle shapes
- particles as aggregation of spheres
Translation

- problem is derived from the equation of motion
 \[\ddot{x} = \dot{v} = \frac{F}{m} \]

- formulation as system of first order ODEs
 \[\dot{v} = \frac{F}{m} \]
 \[\dot{x} = v \]
The Leapfrog-Algorithm

- positions and velocities are calculated alternately

\[v_{i}^{n+\frac{1}{2}} = v_{i}^{n-\frac{1}{2}} + \frac{dt}{m_{i}} F_{i}^{n} \]

\[x_{i}^{n+1} = x_{i}^{n} + dtv_{i}^{n+\frac{1}{2}} \]

- \(F \) is based on a potential

\[F_{ij} = \frac{\partial V_{ij}}{\partial r_{ij}} \]
Lennard-Jones Potential

- pairwise-potential
- potential has two parts, one attracting and one rejecting

\[V(r) = -4\epsilon \left(\left(\frac{r}{\sigma} \right)^{12} - \left(\frac{r}{\sigma} \right)^6 \right) \]

- usually cut off at a distance \(r_c \)
- for reflections: hull potential
Lennard-Jones potential

\[V(r) = 4 \varepsilon \left(\left(\frac{r_m}{r} \right)^{12} - \left(\frac{r_m}{r} \right)^6 \right) \]

\[r_m = \sigma \left(\frac{2^{1/6}}{\sigma} \right) \]

standard

new
Reflections at the boundary
Reflections at the boundary

With the current implementation, there are two possibilities

<table>
<thead>
<tr>
<th>hull potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>ghost particle on the boundary</td>
</tr>
<tr>
<td>potential forces</td>
</tr>
<tr>
<td>pseudo friction</td>
</tr>
</tbody>
</table>
Reflections at the boundary

With the current implementation, there are two possibilities

<table>
<thead>
<tr>
<th>Hull potential</th>
<th>Conservation of momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghost particle on the boundary</td>
<td>Elastic or inelastic collisions</td>
</tr>
<tr>
<td>Potential forces</td>
<td>(Coeff. of restitution from experiments)</td>
</tr>
<tr>
<td>Pseudo friction</td>
<td></td>
</tr>
</tbody>
</table>
Initialization

- sphere shaped
- include experimental data
- pseudo friction on contact
Movement of the simulation volume

- pulsing surface
- hopping
- deformation
Examples
Conclusions and Outlook

- MD can be used for fast particle calculations
- adapted MD towards our application
Conclusions and Outlook

- MD can be used for fast particle calculations
- adapted MD towards our application
- fitting with experiments (falling sphere)
- adaptive linked cell algorithm
- coupling of spheres
- modeling of friction
Conclusions and Outlook

- MD can be used for fast particle calculations
- adapted MD towards our application
- fitting with experiments (falling sphere)
- adaptive linked cell algorithm
- coupling of spheres
- modeling of friction

Thank you for your attention!
Rotation

- rotation is derived from the equation of rigid body rotational motion, e.g. angular momentum
 \[
 j_i^{n+\frac{1}{2}} = j_i^{n-\frac{1}{2}} + t_i^n
 \]

- angular velocity is related to the angular momentum by the inertia tensor
 \[
 \omega = I^{-1}j
 \]

- quaternions useful for the orientation
 \[
 q_i^{n+1} = q_i^n + \frac{dt}{2} Q(q_i^{n+\frac{1}{2}}) \hat{\omega}_i^{n+\frac{1}{2}} \text{ where } \hat{\omega} = (0, \omega)^T
 \]

- Fincham’s rotational quaternion algorithm
Complexity

current status: up to 20000 particles
quadratic complexity

goal: 200000 particles
Linked Cell algorithm

- LCA linear in particle number
- LCA divides simulation volume into cells
- reduction in the number of possible contact particles