Fully automatized determination of Fundamental Equations of State based on molecular simulations in the cloud

CAPE Forum
Paderborn, 29.04.2015
Andreas Köster
Tao Jiang
Gábor Rutkai
Colin W. Glass
Jadran Vrabec

Computational Molecular Engineering
For pure chemical substances...

accurate knowledge in entire fluid region: \(\sim 10 \) substances

satisfactory knowledge: \(< 100 \) substances

For mixtures...

the knowledge is much worse

Problem: scarce experimental data

Fundamental equation of state (FEOS) correlation

\[E(N, V, S) \quad H(N, p, S) \quad F(N, V, T) \quad G(N, p, T) \]

\[F / T(N, 1/T, V) \]

= “explicit function in terms of \(N \), \(1/T \), and \(V \)”

\[\frac{\partial^xyz F / T}{\partial^x (1/T) \partial^y V \partial^z N} \]

- \(E \): internal energy
- \(H \): enthalpy
- \(F \): Helmholtz energy
- \(G \): Gibbs energy
- \(S \): entropy
- \(V \): volume
- \(p \): pressure
- \(T \): temperature
- \(N \): particle number
Thermodynamic properties from FEOS

\[
\frac{\partial^{mn} F}{\partial^m (1/T) \partial^n \rho} (1/T)^m \rho^n = A_{mn}
\]

\(\rho = N / V \)

- Internal energy: \(\frac{E}{RT} = A_{10} \)
- Enthalpy: \(\frac{H}{RT} = A_{10} + A_{01} \)
- Pressure: \(\frac{p}{\rho RT} = A_{01} \)
- Isochoric heat capacity: \(\frac{c_v}{R} = -A_{20} \)
Thermodynamic properties from FEOS

isothermal comp. \[\rho RT \cdot \beta_T = \frac{1}{A_{02} + 2A_{01}} \]

isobaric heat cap. \[\frac{c_p}{R} = -A_{20} + \frac{(A_{01} - A_{11})^2}{2A_{01} + A_{02}} \]

speed of sound \[\frac{Mw^2}{RT} = 2A_{01} + A_{02} - \frac{(A_{01} - A_{11})^2}{A_{20}} \]

Joule-Thomson coeff. \[\rho R \cdot \eta = \frac{-\left(A_{01} + A_{02} + A_{11}\right)}{\left(A_{01} - A_{11}\right)^2 - A_{20} \left(2A_{01} + A_{02}\right)} \]
Molecular Simulation

Molecular dynamics (MD)
Monte Carlo (MC)
Simulation framework

A single MD or MC simulation run per state point yields:

\[
\frac{\partial^{mn} (F / T)}{\partial^m (1 / T) \partial^n \rho} = A_{mn}
\]

\[
c_p, w \quad f(A_{01}, A_{20}, A_{11}, A_{02})
\]

www.ms-2.de
Molecular simulation as engineering mainstream tool*
(for equilibrium thermodynamic property generation)

Advantages:
- much cheaper than experiment
- faster than experiment (once source code is available)
- several thermodynamic properties simultaneously
- applicable under all conditions

Problems:
- dependent on the quality of molecular models
- code development and usage require considerable expertise

Cloud-based automatized FEOS fitting

Goals: - target substances/fluid regions for which there are no data available
- perform the simulation and obtain a FEOS within 24 h
- little human interaction

How: - use simulation data only
- simple fitting approach (linear fit)

\[A^{Res}(\tau, \delta) = \sum_{i=1}^{N} a_i \tau^i \delta^d_i + \sum_{j=k+1}^{M} a_i \tau^i \delta^d_i \exp(-\delta^c_i) + \ldots \]

(everything else is taken from generalized FEOS)
Cloud-based automatized FEOS fitting

User's task: - select state points and molecular model
Cloud-based automatized FEOS fitting

Automatized deployment:
- Distribution of simulations to available High Performance Computers (HPC) in the Cloud
Cloud-based automatized FEOS fitting

User’s task: - select fitting options and check results
Cloud-based automatized FEOS fitting

Example: Phosgene (extremely toxic, yet millions of tons produced annually)

~ 300 state points x 9 derivatives (= 2700 measurements)
Quality of the FEOS from Simulation (Phosgene)

RDEV(p)
RDEV(c_p)
RDEV(c_v)
RDEV(n)

Density / mol · dm^{-3}

Quality of the FEOS from Simulation (Phosgene)

<table>
<thead>
<tr>
<th>(T/\text{K})</th>
<th>(\rho/\text{mol} \cdot \text{dm}^{-3})</th>
<th>RDEV((\rho))</th>
<th>(p/\text{MPa})</th>
<th>RDEV((p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
<td>FEOS</td>
<td>EXP</td>
<td>FEOS</td>
<td></td>
</tr>
<tr>
<td>423.153</td>
<td>10.9416</td>
<td>10.9239</td>
<td>0.2</td>
<td>13.631</td>
</tr>
<tr>
<td>423.150</td>
<td>10.6737</td>
<td>10.6610</td>
<td>0.1</td>
<td>10.397</td>
</tr>
<tr>
<td>423.157</td>
<td>10.2996</td>
<td>10.2936</td>
<td>0.1</td>
<td>6.909</td>
</tr>
<tr>
<td>423.161</td>
<td>9.8760</td>
<td>9.8797</td>
<td>0.0</td>
<td>4.158</td>
</tr>
<tr>
<td>443.149</td>
<td>10.2895</td>
<td>10.2017</td>
<td>0.9</td>
<td>13.776</td>
</tr>
<tr>
<td>443.144</td>
<td>9.8841</td>
<td>9.7885</td>
<td>1.0</td>
<td>10.335</td>
</tr>
<tr>
<td>443.151</td>
<td>9.2543</td>
<td>9.1433</td>
<td>1.2</td>
<td>6.895</td>
</tr>
<tr>
<td>443.156</td>
<td>8.8186</td>
<td>8.6896</td>
<td>1.5</td>
<td>5.509</td>
</tr>
<tr>
<td>473.148</td>
<td>8.9753</td>
<td>8.7598</td>
<td>2.4</td>
<td>13.003</td>
</tr>
<tr>
<td>473.176</td>
<td>8.3070</td>
<td>8.0529</td>
<td>3.1</td>
<td>10.328</td>
</tr>
<tr>
<td>473.200</td>
<td>5.9262</td>
<td>5.3429</td>
<td>9.8</td>
<td>7.329</td>
</tr>
<tr>
<td>473.200</td>
<td>2.5506</td>
<td>2.3811</td>
<td>6.6</td>
<td>5.688</td>
</tr>
<tr>
<td>473.150</td>
<td>1.1798</td>
<td>1.1320</td>
<td>4.1</td>
<td>3.537</td>
</tr>
<tr>
<td>498.143</td>
<td>6.3751</td>
<td>6.0370</td>
<td>5.3</td>
<td>10.370</td>
</tr>
<tr>
<td>498.132</td>
<td>4.4725</td>
<td>4.1488</td>
<td>7.2</td>
<td>8.522</td>
</tr>
<tr>
<td>498.134</td>
<td>2.9328</td>
<td>2.7638</td>
<td>5.8</td>
<td>7.026</td>
</tr>
<tr>
<td>498.134</td>
<td>2.0583</td>
<td>1.9682</td>
<td>4.4</td>
<td>5.743</td>
</tr>
<tr>
<td>498.134</td>
<td>1.4497</td>
<td>1.3856</td>
<td>4.4</td>
<td>4.488</td>
</tr>
<tr>
<td>498.134</td>
<td>1.0241</td>
<td>0.9841</td>
<td>3.9</td>
<td>3.427</td>
</tr>
</tbody>
</table>

Quality of the FEOS from Simulation (Ethylene Oxide)

Experiments

- Molecular simulation based FEOS (top plots)
- Experiment based FEOS, advanced fitting approach (bottom plots)

Summary

Molecular simulation data sets
• Useful for FEOS development (cost effective, fast)
• Applicable under all conditions

Cloud-based FEOS fitting
• Enables non-expert users to create FEOS in a matter of days
• Contribution to making molecular simulation more accessible

Outlook
• Creation of force fields may be automatized extending this workflow
Thank you for listening!

This project was funded by the European Union