Vapor-liquid equilibria of CO$_2$ + C1-C5 alcohols from experiment and the
COSMO-SAC model

Chieh-Ming Hsieh*, Thorsten Windmann, Jadran Vrabec
*Thermodynamics and Energy Technology, University of Paderborn, Paderborn, Germany

Abstract

The phase behavior of CO$_2$ + alcohols is crucial for the design and optimization of extraction processes that use these alcohols as co-solvents to increase the solubility of polar solutes in supercritical CO$_2$. In this study, the vapor-liquid equilibria (VLE) of CO$_2$ + 2,2-dimethyl-1-propanol are measured at 333.2 K and 353.2 K with a high pressure view cell technique based on the synthetic method. This completes the literature database for binary VLE of CO$_2$ with low mass alcohols up to pentanols. We further systematically investigate the prediction of all binary CO$_2$ + C1-C5 alcohols mixtures with the COSMO-SAC model. Qualitative predictions are obtained when the COSMO-SAC model is combined with the Peng-Robinson-Stryjek-Vera equation of state through the modified Huron-Vidal 1st-order or the Wong-Sandler mixing rule.

Keywords: Peng-Robinson-Stryjek-Vera equation of state, phase equilibrium prediction, COSMO-SAC, experiment, carbon dioxide, alcohols

*To whom correspondence should be addressed: Email hsiecm@mail.upb.de
1. Introduction

Supercritical carbon dioxide (ScCO₂) has a wide variety of applications in chemical, food and pharmaceutical industries. For example, ScCO₂ is used as a solvent for the decaffeination of coffee beans, the extraction of natural flavors or as a reaction medium in polymer synthesis processes.¹⁻⁸ However, since ScCO₂ has a limited capability (even at high pressures) for the extraction of polar solutes,²⁻⁹ low molar mass alcohols are added as co-solvents for increasing their solubility.³⁻⁵ The fluid phase behavior of CO₂ + low molar mass alcohol mixtures is thus crucial for the design and optimization of extraction processes that contain these alcohols as co-solvents. To the best of our knowledge, vapor-liquid equilibrium (VLE) data for all CO₂ + C1-C5 alcohols are available in literature, except for CO₂ + 2,2-dimethyl-1-propanol (CAS number: 75-84-3). Therefore, the first goal of this study was to generate experimental VLE data for this system. The molecular structures of all 16 C1-C5 alcohols are illustrated in Figure 1. The vapor pressure of CO₂ + 2,2-dimethyl-1-propanol was measured at 333.2 K and 353.2 K with a high pressure view cell technique based on the synthetic method between 5.33 MPa and 12.8 MPa.

Thermodynamic properties of fluids and their mixtures, in particular phase equilibrium data, are crucial information for process design and optimization.¹⁰,¹¹ Experimental measurements are still the most reliable route for generating such data, however, it is not feasible to measure data under all required conditions, because it is too time-consuming and costly. This particularly holds for newly synthesized compounds that are part of drug development in the pharmaceutical industry.¹²⁻¹³ CO₂ + alcohol systems have been studied intensively by experimental and theoretical works because of their potential for industrial applications.¹⁴⁻¹⁷ For these systems, it
was found that it is a challenging task to predict phase equilibrium properties without input of any experimental mixture data.17 Therefore, the predictive power of the COSMO-SAC model, which does not require any experimental mixture data as an input, was studied here.

Being a relatively new model for liquid mixtures, the COSMO-based methods (COSMO-RS18,19 or COSMO-SAC20-22), were developed in the past two decades. They rely on quantum chemistry calculations to determine the nonideality of liquid mixtures. This type of model does not suffer from the issue of missing parameters, such as group contribution methods, because it does not contain any species-dependent parameters. In preceding work, the COSMO-SAC model was revised and it was shown that it provides acceptable predictions both for VLE and liquid-liquid equilibria (LLE) of mixtures under sub-critical conditions.20 For mixtures containing a supercritical component, a straightforward approach is to combine the COSMO-SAC model with a cubic equation of state (EOS), such as the Peng-Robinson (PR) EOS or its modified version by Stryjek and Vera (PRSV EOS,23 through an excess Gibbs free energy G^e based mixing rule, such as the modified Huron-Vidal 1st-order (MHV1) mixing rule24 or the Wong-Sandler (WS) mixing rule.25,26 In several publications, this approach was assessed for these two mixing rules, because they are classical and are widely used in industrial applications.27-34 Thus, the second goal of this study was to evaluate the predictive power for mixtures of type CO$_2$ + C1-C5 alcohols on the basis of these two mixing rules, i.e.: PRSV+MHV1+COSMOSAC and PRSV+WS+COSMOSAC. It has been shown that the accuracy of this approach can be improved significantly with the introduction of binary interaction parameters,7 however this was not the focus of this study. Finally, a case study on drug solubility in CO$_2$ + ethanol mixtures is conducted to demonstrate a
potential application of these two approaches.

2. Materials and methods

2.1. Materials

2,2-dimethyl-1-propanol (purity ≥ 99%) was purchased from Sigma-Aldrich, Germany. Carbon dioxide (volume fraction 99.995%) was supplied by Air Liquide, Germany. All chemicals were used without further purification.

2.2. Experimental apparatus and procedure

The employed experimental setup is shown in Figure 2. It is a modification of an apparatus which was used for gas solubility measurements in prior work. Compared to the original installation that was described in Ref. an additional calibrated high pressure spindle press B was introduced to load the high pressure view cell with 2,2-dimethyl-1-propanol. To measure the temperature in the cell and in the high pressure pumps, calibrated platinum resistance thermometers (T1 to T4) with a basic resistance of 100 Ω (Pt100) were employed. The temperature measuring error was about ± 0.04 K. Calibrated pressure transducers P1 and P2 (model Super THE, Honeywell test & measurement, measuring ranges: 6.8 MPa for P1 and 20 MPa for P2), with an accuracy of 0.05 % of their respective full measuring ranges, were used to determine the pressure in the view cell and in the supply pipes.

At the beginning of the measurement procedure, the calibrated spindle press A was cooled down to about 298 K and filled with CO₂ from the gas bottle. Hereby, the spindle press was loaded completely with liquid CO₂. The spindle press B was loaded with 2,2-dimethyl-1-propanol from the reservoir via valve V1. Due to the fact that the melting temperature of 2,2-dimethyl-1-propanol is about 325 K at ambient pressure, it
was filled in its solid state into the reservoir and melted therein. Therefore, the climate chamber was heated up to 353 K. When the spindle press B was completely filled with liquid 2,2-dimethyl-1-propanol, valve V1 was closed and the desired quantity of 2,2-dimethyl-1-propanol was loaded into the heated view cell via valve TW-V1. Next, the climate chamber and the view cell were brought to the desired measurement temperature and liquid CO₂ was added to the view cell with the spindle press A until the CO₂ was completely solved in 2,2-dimethyl-1-propanol. A magnetic stirrer was used to enhance the mixing process, which was visually observed with an endoscope. Starting from a homogeneous liquid state, the pressure in the view cell was decreased via the spindle press A in very small steps, until the first bubbles appeared and thus the saturated liquid state was reached. At this state, the vapor pressure of the mixture was measured with the pressure transducer P2.

The input volumes of 2,2-dimethyl-1-propanol and CO₂ were obtained from correlation functions, determined via calibration of the spindle press, between number of turns and the associated volume change of the spindle press. To convert input volume to molar fraction is straightforward as describing in the following. Temperature, pressure and volume of spindle press were recorded before and after the input of compounds. The input mass of CO₂ could be determined from its input volume and the liquid density determined from the equation of state[^36] with recorded temperature and pressure. The input mass of 2,2-dimethyl-1-propanol was calculated by using experimental liquid density[^37,38]. Once the input mass of the compounds is known, the molar fraction can be calculated straightforwardly.

2.3. Thermodynamic models

In this study, the accuracy of a combination of the PRSV EOS[^23] and the
COSMO-SAC model20 through two different mixing rules with respect to the prediction of VLE of CO\textsubscript{2} + C1-C5 alcohols was assessed: MHV\textsubscript{1}24 and WS25,26. These two approaches are denoted as PRSV+MHV\textsubscript{1}+COSMOSAC and PRSV+WS+COSMOSAC and briefly summarized in the following.

The cubic PRSV EOS describes the pressure-volume-temperature relation of a fluid by

\[P = \frac{RT}{v - b} - \frac{a}{v(v + b) + v(v - b)}, \]

where \(P \) is the pressure, \(R \) the gas constant, \(T \) the temperature and \(v \) the molar volume. For a pure fluid \(i \), the energy parameter \(a_i \) and covolume parameter \(b_i \) are determined from the critical temperature \(T_{c,i} \), the critical pressure \(P_{c,i} \) and the acentric factor \(\omega_i \) by

\[a_i(T) = 0.457235 \frac{R^2 T^2}{P_{c,i}} \left(1 + \kappa \left(1 - \frac{T}{T_{c,i}}\right)^2\right), \]

\[b_i = 0.077796 \frac{RT_{c,i}}{P_{c,i}}, \]

with

\[\kappa = \kappa_0 + \kappa_{1,i} \left(1 + \frac{T}{T_{c,i}}\right) \left(0.7 - \frac{T}{T_{c,i}}\right), \]

and

\[\kappa_0 = 0.378893 + 1.4897153 \omega_i - 0.17131848 \omega_i^2 + 0.0196654 \omega_i^3. \]

The species-specific parameter \(\kappa_{1,i} \) of pure fluid \(i \) was obtained from a regression of experimental vapor pressure data. The employed pure substance parameters were taken from literature and are listed in Table 1. In the case of mixtures, a mixing rule is necessary to determine the temperature and composition dependence of the parameters \(a \) and \(b \). Two mixing rules were investigated here: MHV\textsubscript{1} and WS.
The energy parameter a and the covolume parameter b are specified by the MHV1 mixing rule by
\[
\frac{a}{bRT} = \sum_i x_i \left(\frac{a_i}{b_i RT} \right) + \frac{1}{C_{\text{MHV1}}} \left[\frac{G^{\text{ex}}}{RT} + \sum_i x_i \ln \left(\frac{b}{b_i} \right) \right],
\]
(6)
and
\[
b = \sum_i x_i b_i,
\]
(7)
where $C_{\text{MHV1}} = -0.53$ is a constant, N the number of components in the mixture, x_i the mole fraction of component i and G^{ex} the excess Gibbs free energy determined from an activity coefficient model, i.e. COSMO-SAC here.

The WS mixing rule defines these two parameters by
\[
\frac{a}{b} = \sum_i x_i \left(\frac{a_i}{b_i} \right) + \frac{G^{\text{ex}}}{C_{\text{WS}}},
\]
(8)
and
\[
b - \frac{a}{RT} = \sum_i \sum_j x_i x_j \left(b_i + b_j - \frac{\sqrt{a_i a_j}}{RT} \right),
\]
(9)
where $C_{\text{WS}} = -\ln(1 + \sqrt{2})/\sqrt{2}$ is a constant.

The excess Gibbs free energy needed in eqs 6 and 8 was obtained from the strictly predictive COSMO-SAC model20 by
\[
G^{\text{ex}} = RT \sum_i x_i \ln \gamma_i,
\]
(10)
where the activity coefficient γ_i of component i is determined from the sum of the combinatorial and the residual contributions
\[
\ln \gamma_i = \ln \gamma_i^{\text{comb}} + \ln \gamma_i^{\text{res}}.
\]
(11)
The Staverman–Guggenheim combinatorial term39,40 was used to account for molecular size and shape effects.
\[
\ln \gamma_i^{\text{comb}} = 1 - \frac{r_i}{\sum_j x_j r_j} + \ln \frac{r_i}{\sum_j x_j r_j} + \frac{z}{2} q_i \left[\frac{r_i}{q_i} \sum_j x_j q_j + \ln \frac{q_i}{r_i} \sum_j x_j q_j -1 \right],
\]

where \(z = 10 \) is the coordination number, while \(q_i \) and \(r_i \) are the normalized surface area and volume of component \(i \) (the standard surface area and volume for normalization were 79.53 Å\(^2\) and 66.69 Å\(^3\)). It is worth to mention that the value of standard volume does not influence the calculated results, because it cancels out in eq 12. The residual contribution considers only the electrostatic interactions between unlike components in the mixture. These interactions were determined with COSMO-SAC from the molecular surface screening charge density, which can be obtained from quantum mechanical solvation calculations.\(^{41}\) In this study, the quantum mechanical results were taken from a free online database from the group of Liu at the Virginia Polytechnic Institute and State University.\(^{42, 43}\) The \(\sigma \)-profile \(p_i(\sigma) \) is a histogram of surface area of segments with the charge density \(\sigma \) on the molecular surface of component \(i \). For mixtures, the \(\sigma \)-profile \(p_M(\sigma) \) is determined from

\[
p_M(\sigma) = \frac{\sum_i x_i A_i p_i(\sigma)}{\sum_i x_i A_i}.
\]

For a better description of the hydrogen bonding interactions, two modifications were introduced into the COSMO-SAC model.\(^{20, 22}\) First, the \(\sigma \)-profile was separated into three contributions by categorizing the molecular surface into three types: segments of non-hydrogen bonding (nhb) atoms, hydroxyl (OH) groups and other (OT) hydrogen bonding atoms (i.e. O, N, F and H bound to N and F), respectively. The total \(\sigma \)-profile is thus \(p_i(\sigma) = p_i^{\text{nhb}}(\sigma) + p_i^{\text{OH}}(\sigma) + p_i^{\text{OT}}(\sigma) \).\(^{20, 44}\) Second, a Gaussian-type function \(f(\sigma) = 1 - \exp(\sigma^2 / 2\sigma_0^2) \) with \(\sigma_0 = 0.007 \) (e Å\(^2\))^22 was used to account for the probability of OH and OT segments to form a hydrogen bond. The segment activity coefficient \(\Gamma \) of a segment with the charge density \(\sigma_m \) in solution \(j \) (\(j \) is \(i \) for
the pure fluid or M for the mixture) is determined from

$$\ln \Gamma_j^s(\sigma_m^s) = - \ln \left\{ \sum_{t \neq s} \sum_{\sigma_n} p_j^t(\sigma_n^t) \Gamma_j^t(\sigma_n^t) \exp \left[\frac{-\Delta W(\sigma_m^s, \sigma_n^t)}{RT} \right] \right\},$$

(14)

where the superscripts s and t represent the property for a segment of type nhb, OH or OT. $\Delta W(\sigma_m^s, \sigma_n^t)$ is the electrostatic interaction between segment m (of type s) and segment n (of type t) with the charge densities σ_m^s and σ_n^t

$$\Delta W(\sigma_m^s, \sigma_n^t) = c_{ES} (\sigma_m^s + \sigma_n^t)^2 - c_{hb} (\sigma_m^s, \sigma_n^t)(\sigma_m^s - \sigma_n^t)^2,$$

(15)

with the interaction coefficients $c_{ES}/(\text{kcal} \cdot \text{mol}^{-1} \cdot \text{Å}^4 \cdot e^{-2}) = 6525.69 + 1.4859 \cdot 10^8 / (T/K)^2$

and

$$c_{hb}(\sigma_m^s, \sigma_n^t)/(\text{kcal} \cdot \text{mol}^{-1} \cdot \text{Å}^4 \cdot e^{-2}) = \begin{cases}
4013.78 & \text{if } s = t = \text{OH and } \sigma_m^s \cdot \sigma_n^t < 0 \\
932.31 & \text{if } s = t = \text{OT and } \sigma_m^s \cdot \sigma_n^t < 0 \\
3016.43 & \text{if } s = \text{OH}, t = \text{OT, and } \sigma_m^s \cdot \sigma_n^t < 0 \\
0 & \text{otherwise.}
\end{cases}$$

(16)

The global parameter values of the COSMO-SAC model were taken from the literature without any modification. Details can be found in Ref.20

3. Results and discussion

3.1 Experimental results of CO$_2$ + 2,2-dimethyl-1-propanol

The VLE of the system CO$_2$ + 2,2-dimethyl-1-propanol was measured at temperatures of 333.2 K and 353.2 K and pressures of up to 12.8 MPa with respect to the saturated liquid line as shown in Figure 3. Numerical VLE data are listed in Table 2. In Figure 3, an almost linear relationship between the mole fraction of CO$_2$ and the vapor pressure can be identified, if the system is far from the critical line of the mixture. With increasing mole fraction x_{CO_2}, this relationship exhibits a logarithmic
shape, i.e. the vapor pressure slowly approaches the critical pressure. This tendency was also observed for all other CO2 + C1-C5 alcohol mixtures around these temperatures.

3.2 Overview on VLE predictions for CO2 + C1-C5 alcohols

VLE predictions with PRSV+MHV1+COSMOSAC and PRSV+WS+COSMOSAC were investigated for CO2 + all 16 C1-C5 alcohols. The experimental data considered in this work were retrieved from the Dortmund database, except for CO2 + 2,2-dimethyl-1-propanol. For some systems, such as CO2 + methanol or ethanol, experimental data are available for numerous isotherms. Depending on the availability of data for the less popular alcohols, four temperatures were selected in this study: 313.15 K and 333.15 K as well as the highest and lowest temperatures in the database. 313.15 K and 333.15 K were chosen, because most of the CO2 + alcohol mixtures were measured at around one or both of these temperatures. For most systems, the lowest temperature was below the critical temperature of CO2, \(T_{c,CO2} = 304.2 \) K.

Figure 4 shows a comparison of experimental data and the predictive results from PRSV+MHV1+COSMOSAC and PRSV+WS+COSMOSAC for CO2 + ethanol at 283.3 K, 313.15 K, 333.15 K and 453.15 K. For the sub-critical isotherm 283.3 K, the VLE envelope was well predicted by PRSV+MHV1+COSMOSAC, while PRSV+WS+COSMOSAC underestimated the vapor pressure. For temperatures somewhat above \(T_{c,CO2} \), i.e. at 313.15 K and 333.15 K, PRSV+MHV1+COSMOSAC provides satisfactory results for states that are far away from the critical line of the mixture (or at lower \(x_{CO2} \)), but overestimates the vapor pressure if \(x_{CO2} \) approaches the critical line of the mixture. On the other hand, PRSV+WS+COSMOSAC always
underestimates the vapor pressure, except for compositions near the critical line. This tendency can also be seen in the phase diagram at the highest temperature 453.15 K.

There are two interesting phenomena that are worth to mention. First, there is an inconsistency between different sets of experimental data. The difference for the vapor pressure at 313.15 K at \(x_{\text{CO}_2} \approx 0.45 \text{ mol} \cdot \text{mol}^{-1} \) by Yao et al.\(^{46}\) and by Qi et al.\(^{47}\) is about 1.2 MPa. This is significantly larger than the experimental uncertainty that these authors claimed in their publications. Second, PRSV+MHV1+COSMOSAC indicates the existence of a LLE for CO\(_2\) + ethanol at 313.15 K. It can be seen in Figure 4(b) that there is a turning point around \(x_{\text{CO}_2} \approx 0.7 \text{ mol} \cdot \text{mol}^{-1} \). However, a study by Lam et al.\(^{48}\) has shown experimentally that the system CO\(_2\) + ethanol does not exhibit a LLE.

It has been pointed out in the literature that in order to accurately describe VLE of CO\(_2\) + alcohol mixtures from the combination of the PR EOS and the van der Waals one fluid mixing rule with two adjustable binary interaction parameters (\(k_{ij} \) and \(l_{ij} \)), experimental data over certain temperature should be chosen as a training set for \(k_{ij} \) and \(l_{ij} \).\(^{17,49}\) This is an indication that it is a challenging task to adequately predict the fluid phase behavior of CO\(_2\) + alcohol mixtures over a large temperature and composition range.

A comparison of experimental data and the predictive results from PRSV+MHV1+COSMOSAC and PRSV+WS+COSMOSAC for CO\(_2\) + 2-propanol at 293.25 K, 313.15 K, 333.15 K and 443.46 K is shown in Figure 5. At 293.25 K and 313.15 K, the predicted VLE envelope from PRSV+MHV1+COSMOSAC is in good agreement with the experimental data, while PRSV+WS+COSMOSAC again underestimates the vapor pressure. Furthermore, PRSV+MHV1+COSMOSAC does not predict a LLE for this system. At higher temperatures of 333.15 K and 443.46 K, a similar tendency as for the mixture of CO\(_2\) + ethanol at higher temperatures was
found.

Overall, the VLE prediction for CO$_2$ + C1-C5 alcohols can be categorized into two types according to the prediction from PRSV+MHV1+COSMOSAC: type CO$_2$ + ethanol or type CO$_2$ + 2-propanol. Basically, all alcohols considered in this work with the hydroxyl group bound to first carbon atom, such as n-alcohols, can be categorized into type CO$_2$ + ethanol; all others are of type CO$_2$ + 2-propanol. The results for CO$_2$ + 1-butanol, as shown in Figure 6, can be considered as another example for type CO$_2$ + ethanol. However, the only exception is the system CO$_2$ + 2,2-dimethyl-1-propanol (Figure 3), which has its hydroxyl group bound to the first carbon atom, but with predictive results of type CO$_2$ + 2-propanol. VLE phase diagrams for all 16 studied CO$_2$ + C1-C5 alcohol systems can be found in the supporting information. In summary, the VLE prediction for CO$_2$ + C1-C5 alcohols from PRSV+MHV1+COSMOSAC is clearly superior to that from PRSV+WS+COSMOSAC.

3.3 Capability with respect to similar molecules including isomers

On the basis of quantum mechanical calculations only, the COSMO-SAC model is able to distinguish very similar molecules including isomers.12,50 This feature was studied by comparing predicted results for (a) CO$_2$ + C1-C5 n-alcohols, (b) CO$_2$ + propanols and (c) CO$_2$ + butanols.

The comparison of experimental data and predicted results for the five mixtures CO$_2$ + methanol, ethanol, 1-propanol, 1-butanol and 1-pentanol at 313.15 K is shown in Figure 7. The experimental data for these five mixtures, especially for the saturated liquid line, are close to each other. The predictions from PRSV+MHV1+COSMOSAC have a similar tendency as the experimental data before a false LLE is predicted,
except for CO₂ + methanol. PRSV+WS+COSMOSAC shows a very different vapor pressure for the same CO₂ content (especially at around equimolar composition) for different mixtures. This is additional evidence that PRSV+MHV1+COSMOSAC is superior to PRSV+WS+COSMOSAC for CO₂ + alcohols. Furthermore, both methods correctly predict the vapor phase composition in the saturated vapor phase for the different mixtures at low pressures.

Figure 8 compares the experimental data and the predicted results of CO₂ + 1-propanol and 2-propanol around 293.2 K and at 313.15 K. The experimental vapor pressure of CO₂ + 1-propanol is higher than that of CO₂ + 2-propanol at the same x₃CO₂ for both temperatures. This phenomenon was adequately predicted by both models, but PRSV+WS+COSMOSAC underestimates the vapor pressure throughout the whole composition range. The experimental data and the predicted results for CO₂ + 1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol at 313.15 K are compared in Figure 9. As can be seen, the experiments yield a sequence for the vapor pressure at x₃CO₂ ≈ 0.5 mol·mol⁻¹ (from highest to lowest): CO₂ + 1-butanol, 2-methyl-1-propanol, 2-butanol and 2-methyl-2-propanol. Both approaches accurately predict this sequence, but none is able to yield the experimentally observed high mole fraction of 2-methyl-1-propanol in the saturated vapor phase at low pressures.

3.4 Case study for drug solubility prediction

The drug solubility is important for process optimization in the pharmaceutical industry. The COSMO-SAC model is a complementary method to estimate the solubility of solid drugs in organic solvents under ambient conditions when no experimental drug solubility data are available.12, 13, 51 In this section, a case study for the solubility of the two anti-inflammatory drugs naproxen and ibuprofen in CO₂ +
ethanol mixtures at 298 K and 10 MPa is conducted to investigate the applicability of the present approaches. The critical temperature, the critical pressure and the acentric factor are pure substance properties, that are necessary for cubic EOS. In addition, the normal melting temperature and the heat of fusion are necessary for the drug solubility calculation. These pure substance parameters for naproxen and ibuprofen are summarized in Table 3.

The comparison of experimental data and the predictive results from PRSV+MHV1+COSMOSAC and PRSV+WS+COSMOSAC for the solubility of naproxen and ibuprofen in CO$_2$ + ethanol mixtures at 298 K and 10 MPa are shown in Figure 10. Both drugs have a high solubility in pure ethanol and a very low solubility in pure CO$_2$ and their solubility decreases with increasing mole fraction of CO$_2$ in the mixture solvents. PRSV+MHV1+COSMOSAC describes this tendency correctly and the deviations from experimental data are within one log-unit throughout the entire composition range. PRSV+WS+COSMOSAC provides a good prediction for the solubility of both drugs in pure ethanol, but overestimates it in pure CO$_2$. Therefore, PRSV+WS+COSMOSAC exhibits larger deviations for higher CO$_2$ content and predicts a maximum solubility of naproxen in CO$_2$ + ethanol mixtures. This case study shows that these two approaches can be applied to estimate the solubility of other drugs in this type of mixtures, because there is no issue of missing parameters.

5. Conclusions

Experimental VLE data for the binary mixture of CO$_2$ + 2,2-dimethyl-1-propanol were measured with a high pressure view cell technique based on the synthetic method at 313.2 K and 333.2 K in the pressure range from 5.33 to 12.8 MPa. With these new data, experimental VLE data are now available for all binary mixtures of
CO\textsubscript{2} + C1-C5 alcohols. The predictive power of fully predictive models for these 16 binary mixtures was investigated, i.e. the combination of the PRSV EOS with the COSMO-SAC model through the MHV1 mixing rule or alternatively the WS mixing rule without any binary interaction parameters. The predicted results were compared with the available literature data for all CO\textsubscript{2} + C1-C5 alcohols at four selected temperatures from sub-critical to supercritical CO\textsubscript{2} conditions, depending on the availability of experimental data. PRSV+MHV1+COSMOSAC provides satisfactory VLE predictions for these 16 binary mixtures if the systems are far from the critical line of the mixture, while PRSV+WS+COSMOSAC provides better predictions when the systems are near the critical line. Although both models only provide qualitatively correct predictions, they could be viable methods for estimating the solubility of new drugs in this type of mixtures, because there is no issue of missing parameters for these models.

Acknowledgements

The authors would like to thank the financial support from the Alexander von Humboldt Stiftung. We wish to thank Prof. Shiang-Tai Lin and Li-Hsin Wang at National Taiwan University for valuable discussions and Elmar Baumhögger for his support in the experimental investigations.

Supporting Information Available: Detailed results for all binary systems considered in this work. This information is available free of charge via the Internet at http://pubs.acs.org.
Reference:

(55) Gude, M.; Teja, A. S., Vapor-liquid critical properties of elements and

(68) Private Communication, J. David Chase, Hoechst Celanese (January 9, 1995).

(76) Elizalde-Solis, O.; Galicia-Luna, L. A., Solubility of thiophene in carbon dioxide and carbon dioxide + 1-propanol mixtures at temperatures from 313 to 363 K.

(93) Secuianu, C.; Feroiu, V.; Geană, D., Phase behavior for the carbon dioxide +

Table 1. Pure substance parameters of the PRSV EOS

<table>
<thead>
<tr>
<th>Compound</th>
<th>(T_c / K)</th>
<th>(P_c / \text{MPa})</th>
<th>(\omega^a)</th>
<th>(\kappa_1^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbon dioxide</td>
<td>304.2 (^{32})</td>
<td>7.382 (^{33})</td>
<td>0.225 (^{33})</td>
<td>0</td>
</tr>
<tr>
<td>methanol</td>
<td>512.64 (^{34})</td>
<td>8.092 (^{34})</td>
<td>0.564 (^{34})</td>
<td>-0.159565</td>
</tr>
<tr>
<td>Ethanol</td>
<td>514 (^{35})</td>
<td>6.137 (^{35})</td>
<td>0.643 (^{34})</td>
<td>-0.052957</td>
</tr>
<tr>
<td>1-propanol</td>
<td>536.78 (^{34})</td>
<td>5.168 (^{34})</td>
<td>0.62 (^{34})</td>
<td>0.159438</td>
</tr>
<tr>
<td>2-propanol</td>
<td>508.3 (^{36})</td>
<td>4.762 (^{36})</td>
<td>0.668 (^{57})</td>
<td>0.155693</td>
</tr>
<tr>
<td>1-butanol</td>
<td>563.05 (^{34})</td>
<td>4.424 (^{34})</td>
<td>0.591 (^{34})</td>
<td>0.293169</td>
</tr>
<tr>
<td>2-butanol</td>
<td>536.05 (^{58})</td>
<td>4.194 (^{58})</td>
<td>0.577 (^{59})</td>
<td>0.376143</td>
</tr>
<tr>
<td>2-methyl-1-propanol</td>
<td>547.78 (^{39})</td>
<td>4.295 (^{60})</td>
<td>0.592 (^{59})</td>
<td>0.379802</td>
</tr>
<tr>
<td>2-methyl-2-propanol</td>
<td>506.2 (^{60})</td>
<td>3.972 (^{60})</td>
<td>0.612 (^{60})</td>
<td>0.40761</td>
</tr>
<tr>
<td>1-pentanol</td>
<td>588.15 (^{34})</td>
<td>3.909 (^{34})</td>
<td>0.579 (^{34})</td>
<td>0.278242</td>
</tr>
<tr>
<td>2-pentanol</td>
<td>560.3 (^{55})</td>
<td>3.675 (^{55})</td>
<td>0.555</td>
<td>0.476929</td>
</tr>
<tr>
<td>3-pentanol</td>
<td>559.6 (^{55})</td>
<td>3.99 (^{61})</td>
<td>0.547 (^{61})</td>
<td>0.367144</td>
</tr>
<tr>
<td>2-methyl-1-butanol</td>
<td>575.4 (^{55})</td>
<td>3.94 (^{55})</td>
<td>0.588</td>
<td>0.314204</td>
</tr>
<tr>
<td>2-methyl-2-butanol</td>
<td>543.7 (^{55})</td>
<td>3.71 (^{55})</td>
<td>0.4795 (^{62})</td>
<td>0.510698</td>
</tr>
<tr>
<td>3-methyl-1-butanol</td>
<td>579.4 (^{60})</td>
<td>3.93 (^{55})</td>
<td>0.59</td>
<td>0.29606</td>
</tr>
<tr>
<td>3-methyl-2-butanol</td>
<td>556.1 (^{55})</td>
<td>3.87 (^{55})</td>
<td>0.502</td>
<td>0.467261</td>
</tr>
<tr>
<td>2,2-dimethyl-1-propanol</td>
<td>552.7 (^{63})</td>
<td>4.078 (^{63})</td>
<td>0.595</td>
<td>0.238164</td>
</tr>
</tbody>
</table>

\(a \). \(\kappa_1 \) and \(\omega \) are estimated by using experimental vapor pressure data from the DIPPR database\(^{64} \) when they are not available in literature.
Table 2. Experimental vapor–liquid equilibrium data along the saturated liquid line of the mixture CO$_2$ + 2,2-dimethyl-1-propanola generated in this work

<table>
<thead>
<tr>
<th>T/K</th>
<th>P/MPa</th>
<th>x_{CO2}/mol·mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>333.2</td>
<td>5.09</td>
<td>0.280 (2)</td>
</tr>
<tr>
<td>333.2</td>
<td>5.08</td>
<td>0.288 (2)</td>
</tr>
<tr>
<td>333.2</td>
<td>6.63</td>
<td>0.405 (2)</td>
</tr>
<tr>
<td>333.2</td>
<td>8.07</td>
<td>0.515 (3)</td>
</tr>
<tr>
<td>333.2</td>
<td>9.04</td>
<td>0.629 (3)</td>
</tr>
<tr>
<td>333.2</td>
<td>10.17</td>
<td>0.788 (4)</td>
</tr>
<tr>
<td>333.2</td>
<td>10.66</td>
<td>0.853 (5)</td>
</tr>
<tr>
<td>333.2</td>
<td>10.54</td>
<td>0.861 (5)</td>
</tr>
<tr>
<td>353.2</td>
<td>5.33</td>
<td>0.267 (1)</td>
</tr>
<tr>
<td>353.2</td>
<td>5.87</td>
<td>0.292 (2)</td>
</tr>
<tr>
<td>353.2</td>
<td>7.33</td>
<td>0.366 (2)</td>
</tr>
<tr>
<td>353.2</td>
<td>9.43</td>
<td>0.492 (3)</td>
</tr>
<tr>
<td>353.2</td>
<td>11.07</td>
<td>0.607 (3)</td>
</tr>
<tr>
<td>353.2</td>
<td>12.42</td>
<td>0.764 (4)</td>
</tr>
<tr>
<td>353.2</td>
<td>12.79</td>
<td>0.837 (5)</td>
</tr>
<tr>
<td>353.2</td>
<td>12.80</td>
<td>0.840 (5)</td>
</tr>
</tbody>
</table>

a $u(T) = 0.04$ K, $u(P) = 0.01$ MPa and the numbers in parentheses are $u(x)$ in the last digits.
Table 3. Pure substance parameters of naproxen and ibuprofen

<table>
<thead>
<tr>
<th>Compound</th>
<th>T_c/K</th>
<th>P_c/MPa</th>
<th>ω</th>
<th>T_m/K</th>
<th>ΔH_{fus}/ J mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>naproxen</td>
<td>80765</td>
<td>2.4265</td>
<td>0.90465</td>
<td>349.4866</td>
<td>2634266</td>
</tr>
<tr>
<td>ibuprofen</td>
<td>77767</td>
<td>2.9868</td>
<td>1.01a</td>
<td>428.569</td>
<td>3150069</td>
</tr>
</tbody>
</table>

a. ω is estimated by using experimental vapor pressure data from the DIPPR database64
Figure Caption

Figure 1. Molecular structure of the 16 considered C1-C5 alcohols.

Figure 2. Schematic of the experimental setup for the measurement of the vapor pressure and the saturated liquid composition of CO$_2$ + 2,2-dimethyl-1-propanol. V1 indicates a valve, TW-V1 a three-way valve, TX a thermometer and PX a pressure transducer.

Figure 3. Comparison of vapor-liquid equilibria of CO$_2$ + 2,2-dimethyl-1-propanol at 313.2 K (a) and 333.2 K (b) from experiment, this work □ and predictions by PRSV+WS+COSMOSAC --- and PRSV+MHV1+COSMOSAC ─.

Figure 4. Comparison of vapor-liquid equilibria of CO$_2$ + ethanol at 283.3 K (a), 313.15 K (b), 333.15 K (c) and 453.15 K (d) from experiment and predictions by PRSV+WS+COSMOSAC --- and PRSV+MHV1+COSMOSAC ─. Experimental data were taken from the literature (283.15 K: □ 70; 313.15 K: □ 46, ◊ 71, △ 72, ○ 47, x 73, + 49; 333.15 K: □ 74, ◊ 75, △ 76, ○ 49; 453.15 K: □ 74).

Figure 5. Comparison of vapor-liquid equilibria of CO$_2$ + 2-propanol at 293.25 K (a), 313.15 K (b), 333.15 K (c) and 443.46 K (d) from experiment and predictions by PRSV+WS+COSMOSAC --- and PRSV+MHV1+COSMOSAC ─. Experimental data were taken from the literature (293.25 K: □ 77; 313.15 K: □ 78, ◊ 45, 333.15 K: □ 45, ◊ 79; 443.46 K: □ 80).

Figure 6. Comparison of vapor-liquid equilibria of CO$_2$ + 1-butanol at 293.15 K (a),
313.15 K (b), 333.15 K (c) and 430.25 K (d) from experiment and predictions by PRSV+WS+COSMOSAC --- and PRSV+MHV1+COSMOSAC —. Experimental data were taken from the literature (293.15 K: □ 81; 313.15 K: □ 82, ◊ 45, Δ 81, ○ 83; 333.15 K: □ 84, ◊ 83; 430.15 K: □ 80).

Figure 7. Comparison of vapor-liquid equilibria of CO$_2$ + C1-C5 n-alcohols at 313.15 K from experiment and predictions by PRSV+MHV1+COSMOSAC (a) and PRSV+WS+COSMOSAC (b). The blue lines and diamonds represent experimental and predicted data of CO$_2$ + methanol, respectively; the green lines and circles CO$_2$ + ethanol; the red lines and triangles CO$_2$ + 1-propanol; the purple lines and crosses CO$_2$ + 1-butanol; the black lines and squares CO$_2$ + 1-pentanol.

Figure 8. Comparison of vapor-liquid equilibria of CO$_2$ + propanols around 293.2 K (a) and at 313.15 K (b) from experiment and predictions by PRSV+WS+COSMOSAC --- and PRSV+MHV1+COSMOSAC —. The black lines and squares represent experimental and predicted results of CO$_2$ + 1-propanol, respectively; the gray lines and circles CO$_2$ + 2-propanol.

Figure 9. Comparison of vapor-liquid equilibria of CO$_2$ + butanols at 313.15 K from experiment and predictions by PRSV+MHV1+COSMOSAC (a) and PRSV+WS+COSMOSAC (b). The blue lines and diamonds represent experimental and predicted data of CO$_2$ + 1-butanol, respectively; the green lines and circles CO$_2$ + 2-butanol; the red lines and triangles CO$_2$ + 2-methyl-1-propanol; the black lines and squares CO$_2$ + 2-methyl-2-propanol.
Figure 10. Comparison of the solubility of naproxen (a) and ibuprofen (b) in CO$_2$ + ethanol mixtures at 298 K and 10 MPa from experiment □97 and predictions by PRSV+MHV1+COSMOSAC --- and PRSV+WS+COSMOSAC ---.
Figures

Figure 1.

methanol

ethanol

propanols

butanols

pentanols
Figure 2.
Figure 3.

(a) $T = 333.2$ K

(b) $T = 353.2$ K
Figure 4.

(a) $T = 283.3$ K
(b) $T = 313.15$ K
(c) $T = 333.15$ K
(d) $T = 453.15$ K

P (MPa)

x_{CO2}, y_{CO2} (mol.mol$^{-1}$)
Figure 5.

(a) $T = 293.25\, K$

(b) $T = 313.15\, K$

(c) $T = 333.15\, K$

(d) $T = 443.46\, K$
Figure 6.
Figure 7.
Figure 8.

(a) $T \approx 293.2$ K

(b) $T = 313.15$ K

P (MPa)

x_{CO_2}, y_{CO_2} (mol.mol$^{-1}$)
Figure 9.
Figure 10.
Vapor-liquid equilibria of CO$_2$ + C1-C5 alcohols from experiment and the COSMO-SAC model

Chieh-Ming Hsieh*, Thorsten Windmann, Jadran Vrabec